The Hubble Space Telescope has found a star that survived the catastrophic explosion of a neighboring star.

The Hubble Space Telescope has found a star that survived the catastrophic explosion of a neighboring star.

“This was the moment we had been waiting for, finally seeing the evidence for a binary system progenitor of a fully stripped supernova,” Ori Fox, an astronomer from the Space Telescope Science Institute in Maryland and lead investigator on the Hubble research program, said in the statement. “The goal is to move this area of study from theory to working with data and seeing what these systems really look like.”

The observations shed new light on the nature of massive stars in binary systems. Observations of SN 2013ge also help explain how some stars are stripped of their hydrogen pre-supernova, which, in this case, is the result of an unseen stellar companion siphoning gas from its partner before it explodes, according to the statement.

“So much of studying cosmic explosions is like forensic science — searching for clues and seeing what theories match,” Drout added. “Thanks to Hubble, we are able to see this directly.”

“In recent years many different lines of evidence have told us that stripped supernovas are likely formed in binaries, but we had yet to actually see the companion,” Maria Drout, an astronomer on the team from the University of Toronto in Canada, said in the statement.

Story Highlights

  • When a large star dies, it bursts in a spectacular blast of light, commonly known as a supernova. Because this powerful explosion can briefly outshine galaxies, the star’s surviving partner has stayed hidden from view – until now. Researchers used the Hubble Space Telescope’s Wide Field Camera 3 to analyse the supernova, named SN 2013ge, in ultraviolet light. According to NASA, while the light from the spectacular star explosion has been diminishing since 2016, another nearby source of ultraviolet light has maintained its brightness over time, indicating that SN 2013ge has a surviving binary companion.

  • Using the Hubble data, astronomers were able to identify the signature of various elements in the supernova explosion. Strangely, no hydrogen was detected in the region of SN 2013ge, leaving scientists to guess at how the gas might have been stripped away before the explosion occurred.

Astronomers can now use SN 2013ge’s surviving companion to better understand the characteristics of the star that exploded, which has since become a compact object, such as a neutron star or black hole. The companion star will likely experience a similar fate, given that it, too, is a massive star.

Now, the researchers will be able to track the surviving star’s evolution. Depending on the distance between the original companion stars, the surviving partner will either be flung out of the system — which could help explain why solitary supernovas are observed across the universe — or continue orbiting its companion before merging to create gravitational waves. However, such an event would not occur for a billion years, the researchers said.

“Understanding the lifecycle of massive stars is particularly important to us because all heavy elements are forged in their cores and through their supernovae,” Alex Filippenko, co-author of the study and an astronomer at the University of California at Berkeley, said in the statement. “Those elements make up much of the observable universe, including life as we know it.”